Analisis Angka Kematian Bayi Di Provinsi Nusa Tenggara Timur Dengan Model Regresi Spasial

Authors

  • Elisabeth Brielin Sinu Universitas Nusa Cendana
  • Ambrosius Dedi A. Sinu Universitas Nusa Cendana

DOI:

https://doi.org/10.47861/jkpu-nalanda.v1i6.687

Keywords:

Infant Mortality Rate, Spatial Regression, SEM, SAR

Abstract

This research aims to examine the significant factors influencing Infant Mortality Rate (IMR) in the East Nusa Tenggara Province. Estimation is carried out using a spatial regression model approach. The variables under investigation are the Infant Mortality Rate (Y), the percentage of Low Birth Weight (X1), the percentage of infants receiving breastfeeding (X2), and the percentage of deliveries assisted by medical personnel (X3). The research data consist of secondary data from the year 2022 in 22 regencies/cities obtained from the Central Statistics Agency (BPS) of the East Nusa Tenggara Province. Modeling with Ordinary Least Squares (OLS) regression produces one significant independent variable at α=5%, namely the percentage of deliveries assisted by medical personnel. Based on diagnostic tests, spatial dependence occurs at lag, indicating that the appropriate spatial regression model is the Spatial Autoregressive Model (SAR). However, a Spatial Error Model (SEM) is still used as a comparison. From these two spatial models, it is found that the significant independent variable affecting the IMR in the 22 regencies/cities in East Nusa Tenggara is the percentage of deliveries assisted by medical personnel. The weight used is queen contiguity. Based on R2 and AIC criteria, the best spatial regression model is the Spatial Autoregressive Model (SAR) because it has the highest R2 of 0.778282 and the smallest AIC of 132.518. For further research, it is recommended to consider local factors that may influence IMR, such as access to clean water, sanitation, educational level, electrification ratio, which may vary in each region.

References

Afianti, N. (2017). Analisis Faktor-Faktor Yang Berpengaruh Terhadap Angka Kematian Bayi Di Jawa Timur Menggunakan Regresi Spasial (Doctoral dissertation, UNIVERSITAS NEGERI JAKARTA). http://repository.unj.ac.id/id/eprint/26415

BPS Provinsi NTT. https://ntt.bps.go.id/statictable/2023/02/02/923/imr-cmr-dan-u5mr-menurut-kabupaten-kota-hasil-lf-sp2020.html

BPS Provinsi NTT. https://ntt.bps.go.id/indicator/30/223/1/jumlah-bayi-lahir-bayi-berat-badan-lahir-rendah-bblr-bblr-dirujuk-dan-bergizi-buruk.html

BPS Provinsi NTT. Provinsi Nusa Tenggara Timur Dalam Angka. 2023. ISSN 0215-2223

Erdkhadifa, R. (2022). Faktor-Faktor Yang Mempengaruhi Pertumbuhan Ekonomi Di Jawa Timur Dengan Pendekatan Spatial Regression. IQTISHADUNA: Jurnal Ilmiah Ekonomi Kita, 11(2), 122-140. https://doi.org/10.46367/iqtishaduna.v11i2.729

Husada, P. Y., & Yuniasih, A. F. (2022, November). Analisis Spasial Angka Kematian Neonatal di Pulau Jawa Tahun 2020. In Seminar Nasional Official Statistics (Vol. 2022, No. 1, pp. 207-216). https://doi.org/10.34123/semnasoffstat.v2022i1.1273

Laswinia, V. D., & Chamid, M. S. (2016). Analisis Pola Hubungan Persentase Penduduk Miskin dengan Faktor Lingkungan, Ekonomi, dan Sosial di Indonesia Menggunakan Regresi Spasial. Jurnal Sains dan Seni ITS, 5(2).

Purba, O. N., & Setiawan, S. (2016). Pemodelan Pertumbuhan Ekonomi Provinsi Sumatera Utara dengan Pendekatan Ekonometrika Spasial Data Panel. Jurnal Sains dan Seni ITS, 5(2). DOI:10.12962/j23373520.v5i2.16397

Rezeki, E. S. (2022). Analisis Regresi Spasial Laju Pertumbuhan Ekonomi Akibat Pandemi Covid-19 di Provinsi Jambi (Doctoral dissertation, Matematika).

Rizki, Y. Penerapan Regresi Spasial Untuk Data Wilayah Miskin Kabupaten Di Jawa Timur. http://repository.ipb.ac.id/handle/123456789/80806

Sutikno, S., Aditie, N. B., & Pramono, M. S. (2012). Regresi Spatial Durbin Model untuk Mengidentifikasi Faktor yang Berpengaruh pada Angka Kematian Bayi di Jawa Timur. Indonesian Bulletin of Health Research, 40(4), 20662. DOI: 10.22435/bpk.v40i4 Des.2901.190-200

Wibowo, W., Sinu, E. B., & Setiawan, S. (2017, March). Gross regional domestic product estimation: Application of two-way unbalanced panel data models to economic growth in East Nusa Tenggara province. In AIP Conference Proceedings (Vol. 1825, No. 1). AIP Publishing. https://doi.org/10.1063/1.4978995

Downloads

Published

2023-12-22

How to Cite

Elisabeth Brielin Sinu, & Ambrosius Dedi A. Sinu. (2023). Analisis Angka Kematian Bayi Di Provinsi Nusa Tenggara Timur Dengan Model Regresi Spasial. Jurnal Kajian Dan Penelitian Umum, 1(6), 287–299. https://doi.org/10.47861/jkpu-nalanda.v1i6.687

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.